The game Grundy number of graphs
نویسندگان
چکیده
Given a graph G = (V,E), two players, Alice and Bob, alternate their turns in choosing uncoloured vertices to be coloured. Whenever an uncoloured vertex is chosen, it is coloured by the least positive integer not used by any of its coloured neighbours. Alice’s goal is to minimize the total number of colours used in the game, and Bob’s goal is to maximize it. The game Grundy number of G is the number of colours used in the game when both players use optimal strategies. It is proved in this paper that the maximum game Grundy number of forests is 3, and the game Grundy number of any partial 2-tree is at most 7. Key-words: colouring game, game Grundy number, trees, partial 2-trees ∗ Projet Mascotte, I3S (CNRS, UNS) and INRIA, Sophia Antipolis. Partly supported by the French Agence Nationale de la Recherche under Grant GRATEL ANR-09-blan-0373-01. Email: [email protected] † Department of Mathematics, Zhejiang Normal University, China. Grant number: ZJNSF No. Z6110786. Email: [email protected] in ria -0 06 00 73 8, v er si on 1 15 J un 2 01 1 Le nombre Grundy par jeu des graphes Résumé : Etant donné un graphe G = (V,E), deux joueurs, Alice et Bob, jouent chacun leur tour en choisissant un sommet non-coloré. A chaque fois, qu’un sommet est choisi, il est coloré avec le plus petit entier naturel qui n’est assigné à aucun de ses voisins. Le but d’Alice est de minimiser le nombre de couleurs utilisées, et le but de Bob est de maximiser ce nombre. Le nombre Grundy par jeu de G est le nombre de couleurs utilisées si les deux joueurs adoptent un stratégie optimale. Dans ce rapport, nous montrons que le nombre Grundy par jeu maximal d’une forêt est 3 et que le nombre Grundy par jeu d’un 2-arbre partiel est au plus 7. Mots-clés : jeu de coloration, nombre Grundy par jeu, arbre, 2-arbre partiel in ria -0 06 00 73 8, v er si on 1 15 J un 2 01 1 The game Grundy number of graphs 3
منابع مشابه
Asymmetric Coloring Games on Incomparability Graphs
Consider the following game on a graph G: Alice and Bob take turns coloring the vertices of G properly from a fixed set of colors; Alice wins when the entire graph has been colored, while Bob wins when some uncolored vertices have been left. The game chromatic number of G is the minimum number of colors that allows Alice to win the game. The game Grundy number of G is defined similarly except t...
متن کاملKayles on Special Classes of Graphs - An Application of Sprague-Grundy Theory
Kayles is the game, where two players alternately choose a vertex that has not been chosen before nor is adjacent to an already chosen vertex from a given graph. The last player that choses a vertex wins the game. We show, with help of Sprague-Grundy theory, that the problem to determine which player has a winning strategy for a given graph, can be solved in O(n3) time on interval graphs, on ci...
متن کاملPaired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملResults on the Grundy chromatic number of graphs
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i < j , every vertex ofG colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by (G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining (G) k, for any fixed in...
متن کاملExact values for the Grundy number of some graphs
The Grundy number of a graph G is the maximum number k of colors used to color the vertices of G such that the coloring is proper and every vertex x colored with color i, 1 ≤ i ≤ k, is adjacent to (i 1) vertices colored with each color j, 1 ≤ j ≤ i 1. In this paper we give bounds for the Grundy number of some graphs and Cartesian products of graphs. In particular, we determine an exact value of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 25 شماره
صفحات -
تاریخ انتشار 2013